Preprints
- R. Liu, S. Khose, J. Xiao, L. Sathidevi, K. Ramnath, Z. Kira, E.L. Dyer: LatentDR: Improving model generalization through sample-aware latent degradation and restoration, Sept 2023 (Preprint)
- D.F. Parks+, A.M. Schneider+, Y. Xu, S.J. Brunwasser, S. Funderburk, D. Thurber, T. Blanche, E.L. Dyer, D. Haussler, K.B. Hengen: A non-oscillatory, millisecond-scale embedding of brain state provides insight into behavior, Jun 2023 (Preprint)
- M. Azabou, M. Mendelson, N. Ahad, M. Sorokin, S. Thakoor, C. Urzay, E.L. Dyer: Relax, it doesn’t matter how you get there: A new self-supervised approach for multi-timescale behavior analysis, Dec 2022 (Preprint, Web)
- : Circuit-specific selective vulnerability in the DMN persists in the face of widespread amyloid burden, ( Preprint)
- C-H Lin, C. Kaushik, E.L. Dyer+ & V. Muthukumar+: The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective, arXiv:2210.05021 [cs.LG], Nov 2022 (Preprint, Code, Poster) (+ co-last authors)
- N. Ahad, E.L. Dyer, K.B. Hengen, Y. Xie, M.A. Davenport: Learning Sinkhorn divergences for supervised change point detection, arXiv:2202.04000, Feb 2022 (Preprint)
2023
-
Mehdi Azabou, Venkataramana Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran Liu, Michal Valko, Petar Velickovic, Eva L. Dyer: Half-Hop: A graph upsampling approach for slowing down message passing, Proceedings of the International Conference on Machine Learning (ICML), July 2023. (Paper, Poster, Code)
-
A. Schneider+, M. Azabou+, L. McDougall-Vigier, D.Parks, S. Ensley, K. Bhaskaran-Nair, T. Nowakowski, E.L. Dyer+ & K.B. Hengen+: Transcriptomic cell type structures in vivo neuronal activity across multiple timescales, Cell Reports, 2023 (Paper) (+ co-first, co-corresponding last authors)
- De novo evolution of macroscopic multicellularity, Nature, 2023 (
-
M. Mendelson, M. Azabou, S. Jacob, N. Grissom, D.P. Darrow, B. Ebitz, A. Herman, E.L. Dyer: Learning signatures of decision making from many individuals playing the same game, 11th IEEE EMBS Conference on Neural Engineering (NER’23), April 2023, (Paper)
-
C. Urzay+, N. Ahad+, Mehdi Azabou, Aidan Schneider, Geethika Atmakuri, K.B. Hengen, E.L. Dyer: Detecting change points in neural population activity with contrastive metric learning, 11th IEEE EMBS Conference on Neural Engineering (NER’23), April 2023 (+ co-first authors) (Paper)
2022
- R. Liu, M. Azabou, M. Dabagia, J. Xiao, E.L. Dyer: Seeing the forest and the tree: Building representations of both individual and collective dynamics with transformers, Advances in Neural Information Processing Systems (NeurIPS), arXiv:2206.06131, Dec 2022 (Paper)
- J. Quesada+, L. Sathidevi+, R. Liu, N. Ahad, J.M. Jackson, M. Azabou, J. Xiao, C. Liding, C. Urzay, W. Gray-Roncal, E.C. Johnson+ & E.L. Dyer+: MTNeuro: A Benchmark for Evaluating Representations of Brain Structure Across Multiple Levels of Abstraction, Advances in Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track, Dec 2022 (Page) (+ co-first, co-corresponding last authors)
- M. Azabou, M. Mendelson, M. Sorokin, S. Thakoor, N. Ahad, C. Urzay, E.L. Dyer, Learning Behavior Representations Through Multi-Timescale Bootstrapping, Conference on Vision and Pattern Recognition (CVPR) Workshop on Multi-Agent Behavior, 2022 (Paper, Poster) [Oral]
- J.M. Jackson+, R. Liu+, E.L. Dyer: Building representations of different brain areas through hierarchical point cloud networks, Conference on Medical Imaging with Deep Learning (MIDL), 2022 (Paper)
- S. Thakoor, C. Tallec, M. Gheshlaghi Azar, M. Azabou, E.L. Dyer, R. Munos, P. Velickovic, M. Valko, Large-Scale Representation Learning on Graphs via Bootstrapping, International Conference Learning Representations (ICLR), 2022 (Paper, Code)
- M. Dabagia, K. Kording, E.L. Dyer, Aligning latent representations of neural activity, Nature Biomedical Engineering, 2022 (Paper)
2021
- M. Azabou, M. Gheshlaghi Azar, R. Liu, C-H. Lin, E.C. Johnson, K. Bhaskharan-Nair, M. Dabagia, K.B. Hengen, W. Gray-Roncal, M. Valko, E.L. Dyer, Mine Your Own vieW: Self-supervised learning through across-sample prediction, Neural Information Processing Systems (NeurIPS), Workshop on Self-supervised Learning: Theory and Practice (Oral), Dec 2021 (Paper, Code) [Oral]
- M. Azabou+, M. Dabagia+, R. Liu+, C-H. Lin, K.B. Hengen, E.L. Dyer, Using self-supervision and augmentations to build insights into neural coding, Neural Information Processing Systems (NeurIPS), Workshop on Self-supervised Learning: Theory and Practice, Dec 2021 (Paper)
- R. Liu, M. Azabou, M. Dabagia, C-H. Lin, M. Gheshlaghi Azar, K.B. Hengen, M. Valko, E.L. Dyer, Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity, Neural Information Processing Systems (NeurIPS), Accepted for Oral (1% submissions), 2021 (Paper, Code) [Oral]
- F. Pei+, J. Ye+, D. Zoltowski, A. Wu, R.H. Chowdhury, H. Sohn, J.E. O’Doherty, K.V. Shenoy, M.T. Kaufman, M. Churchland, M. Jazayeri, L.E. Miller, J.Pillow, I.M.Park, E.L. Dyer, C. Pandarinath, Neural Latents Benchmark ’21: Evaluating latent variable models of neural population activity, Neural Information Processing Systems (NeurIPS), Benchmark and Datasets Track, 2021 (Paper, Page)
- A. Balwani+, J. Miano+, R. Liu, L. Kitchell, J.A. Prasad, E.C. Johnson, W. Gray-Roncal, E.L. Dyer, Multi-scale modeling of neural structure in X-ray imagery, IEEE International Conference on Image Processing (ICIP), 2021 (Paper)
- C-H. Lin, M. Azabou, E.L. Dyer, Making transport more robust and interpretable by moving data through a small number of anchor points, International Conference on Machine Learning (ICML), 2021 (Paper, Poster, Code)
- C-H. Lin, JD Miano, EL Dyer, Bayesian optimization for modular black-box systems with switching costs, Conference on Uncertainty in Artificial Intelligence (UAI), July 2021 (Paper)
2020
- E.C. Johnson, M. Wilt, L.M. Rodriguez, R.Tenazas, C. Rivera, N. Drenkow, D. Kleissas, T.J. LaGrow, H. Cowley, J. Downs, J. Matelsky, M. Hughes, E. Reilly, B. Wester, E.L. Dyer, K.P. Kording, W. Gray-Roncal, Toward a Reproducible, Scalable, Framework for Processing Large Neuroimaging Datasets, GigaScience, Volume 9, Issue 12, December 2020 (Paper)
- R. Liu, C. Subakan, A. Balwani, J. Whitesell, J.A. Harris, S. Koyejo, E.L. Dyer, A generative modeling approach for interpreting population-level variability in brain structure, International Conference on Medical Image Computing & Computer Assisted Intervention (MICCAI), October 2020 (Paper, bioRxiv)
- M. Jas, T. Achakulvisut, A. Idrizović, D. Acuna, M. Antalek, V. Marques, T. Odland, R.P. Garg, M. Agrawal, Y. Umegaki, P. Foley, H. Fernandes, D. Harris, B. Li, O. Pieters, S. Otterson, G. De Toni, C. Rodgers, E.L. Dyer, M Hamalainen, K.P. Kording, P. Ramkumar. Pyglmnet: Python implementation of elastic-net regularized generalized linear models. J Open Source Software 5:47, 2020 (Paper/Code)
- K. Shadi, E.L. Dyer, C. Dovrolis, Multi-sensory integration in the mouse cortical connectome using a network diffusion model, Network Neuroscience, October 2020 (Paper)
- J.A. Prasad, A.H. Balwani, E.C. Johnson, J.D. Miano, V. Sampathkumar, V. de Andrade, K. Fezzaa, M. Du, R. Vescovi, C. Jacobsen, K.P. Kording, D. Gursoy, W. Gray Roncal, N. Kasthuri, E.L. Dyer, A three-dimensional thalamocortical dataset for characterizing brain heterogeneity, Nature Scientific Data, October 2020 (Paper, Interactive X-ray Atlas)
- A. Balwani, E.L. Dyer, A deep feature learning approach for mapping the brain’s microarchitecture and organization, International Conference on Machine Learning (ICML), Workshop on ML Interpretability for Scientific Discovery, July 2020 (Extended version, Workshop Paper)
2019
- A. Balwani, E.L. Dyer, Modeling variability in brain architecture with deep feature learning, IEEE Asilomar Conference on Signals, Systems, and Computers, Dec 2019 (Paper)
- K. Milligan, A. Balwani, E.L. Dyer, Brain Mapping at High Resolutions: Challenges and Opportunities, Current Opinion in Biomedical Engineering, 2019 (Paper)
- J. Lee, M. Dabagia, E.L. Dyer+, C. Rozell+, Hierarchical Optimal Transport for Multimodal Distribution Alignment, Neural Information Processing Systems (NeurIPS), Dec 2019. (+ equal contribution) (Paper, Code)
- D. Rolnick, E.L. Dyer, Generative models and abstractions for large-scale neuroanatomy datasets, Current Opinion in Neurobiology, February 2019. (Paper)
2018
- T. J. Lee, A. Kumar, A. Balwani, D. Brittain, S. Kinn, C. A. Tovey, E. L. Dyer, N.M. da Costa, R.C. Reid, C.R. Forest, D.J. Bumbarger, Large-scale neuroanatomy using LASSO: Loop-based Automated Serial Sectioning Operation, Plos ONE, October 2018. (Paper)
- C. Pandarinath, K.C. Ames, A.A. Russo, A. Farshchian, L.E. Miller, E.L. Dyer, J.C. Kao, Latent factors and dynamics in motor cortex and their application to brain-machine interfaces, Paper) . (
- T.J. LaGrow, M. Moore, J.A. Prasad, M.A. Davenport, E.L. Dyer, Approximating Cellular Densities from High-Resolution Neuroanatomical Imaging Data, IEEE Engineering in Medicine and Biology Annual Conference (EMBC), July 2018. (Paper)
- X. Yang, V. De Andrade, W. Scullin, E. L. Dyer, F. De Carlo, N. Kasthuri, Doga Gürsoy, Enhancing low-dose X-ray tomography through a deep convolutional neural network, Nature Scientific Reports 8, 2018. (Paper)
2017
- E.L. Dyer, M. Azar, H.L. Fernandes, M. Perich, L.E. Miller, and K.P. Körding, A cryptography-based approach to movement decoding, Nature Biomedical Engineering, 1(12), 967. 2017. (Paper, Code)
- E.L. Dyer, W.G. Roncal, J.A. Prasad, H.L. Fernandes, D. Gürsoy, V. De Andrade, K. Fezzaa, X. Xiao, J.T. Vogelstein, C. Jacobsen, K.P. Körding & N. Kasthuri, Quantifying mesoscale neuroanatomy using X-ray microtomography, Paper, Code, Data) . (
- A. Mirhoseini, E.L. Dyer, E. Songhori, R.G. Baraniuk, and F. Koushanfar, RankMap: A platform-aware framework for distributed learning from dense datasets, IEEE Transactions on Neural Networks and Learning Systems, 2017. (Paper, Code)
<2017
- M. Azar, E.L. Dyer, and K.P. Körding, Convex relaxation regression: Black-Box optimization of smooth functions by learning their convex envelopes, Conference on Uncertainty in Artificial Intelligence (UAI), June 2016. (Paper, Poster, Slides)
- E.L. Dyer, A.C. Sankaranarayanan, and R.G. Baraniuk, Greedy feature selection for subspace clustering, The Journal of Machine Learning Research (JMLR) 14 (1), 2487-2517, September 2013. (Paper)
- E.L. Dyer, C. Studer, J.T. Robinson, and R.G Baraniuk, A robust and efficient method to recover neural events from noisy and corrupted data, IEEE EMBS Neural Engineering (NER) Conference, 2013. (Paper, Code)