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I. ABSTRACT

Finding points in time where the distribution of neural
responses changes (change points) is an important step in
many neural data analysis pipelines. However, in complex
and free behaviors, where we see different types of shifts
occurring at different rates, it can be difficult to use
existing methods for change point (CP) detection because
they can’t necessarily handle different types of changes
that may occur in the underlying neural distribution.
Additionally, response changes are often sparse in high
dimensional neural recordings, which can make existing
methods detect spurious changes. In this work, we introduce
a new approach for finding changes in neural population
states across diverse activities and arousal states occurring
in free behavior. Our model follows a contrastive learning
approach: we learn a metric for CP detection based on
maximizing the Sinkhorn divergences of neuron firing rates
across two sides of a labeled CP. We apply this method to
a 12-hour neural recording of a freely behaving mouse to
detect changes in sleep stages and behavior. We show that
when we learn a metric, we can better detect change points
and also yield insights into which neurons and sub-groups
are important for detecting certain types of switches that
occur in the brain.
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II. INTRODUCTION

The brain is constantly in a state of flux, with variations
occurring as individuals switch their attention to new tasks [12]
or change their mood and overall state [16] Thus, in the analysis
of data that spans multiple states or behaviors, identifying
change points, or points in time where the distribution of
neural responses shifts, becomes a critical task [8].

Change points have been studied in neural activity for single
neurons [15] and in relatively simple tasks where there are
a small number of pre-defined switches (e.g., Ready-Set-Go
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has three phases and two change points) [10], [2]. However,
there is a lot less work that examines the detection of changes
in multi-neuron recordings during naturalistic behavior, where
many different types of CPs can occur without any prompt or
warning. In these cases, we need methods that can detect any
number of diverse types of shifts that occur in the brain.

In this work, we establish a new metric learning approach
for detecting change points in neural population activity. Our
method uses a triplet loss to learn a metric where samples on
different sides of a labeled change point are repelled from one
another and nearby points on one side of a change point are
brought closer (see Figure 1).

We use this approach to analyze a 12-hour block of neural
activity from hippocampus (CA1) and show that we can better
detect sleeping states and behavior from a small amount of
labeled data. Critically, our method is also interpretable and
can be used to reveal which neurons or interactions between
neurons are important for revealing certain types of shifts in the
population states. Our results suggest that by coupling metric
learning with a contrastive sampling mechanism, we can build
interpretable measures of shifts in brain state over long time
periods.

Our contributions are as follows:

• We introduce a new and interpretable approach for change
point detection in neural population activity.

• We show how multiple metrics can be learned jointly to
facilitate change point detection in diverse settings.

• We apply our method to a 12 hour long recording from
the mouse cortex and show that our approach can improve
sleep stage recovery by identifying change points in neural
activity more accurately.

III. BACKGROUND

A. Change point detection

Change points are instances in a sequence where there
is a change in the data generating distributions. In general
online methods for change point detection (CPD), a measure
of divergence (i.e., KL-divergence or Wasserstein distances)
are often used to determine if two subsequent windows of
data are generated from the same distribution or not [6], [4].
This measure of divergence is applied on two windows, a past
window and a future window, which are slided along the length
of the sequence. A change point is detected at instances where
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the measure of divergence between future and past windows
is greater than a set threshold.

Formally, a CP is detected at time t when the divergence
d between the past window X t

p and the future window X t
f is

greater than a set threshold τ. Thus, the decision rule can be
expressed with the following equation:

d(X t
p,X

t
f )≥ τ.

Here, we will use this general online approach for CP
detection in neural data. However, we will also show how using
some supervised data to learn a metric can help to better detect
change points of interest and provide added interpretability. This
metric can be used and plugged into our Sinkhorn divergence
and then used in an online manner.

B. Wasserstein distances and Sinkhorn divergences
Wasserstein distances compute the minimal cost of transport-

ing mass from one distribution to another. Concretely speaking,
consider two discrete multivariate distributions α and β on Rd .
We can express these distributions as

α =
n

∑
i=1

aiδxi and β =
m

∑
j=1

b jδy j , (1)

where δx is the Dirac function at position x ∈ Rd , and
similarly δy is the Dirac function at position y ∈ Rd . Thus
xi and y j denote the mass locations, while ai,bi ∈ R+ are the
weights at these mass locations for the distributions α and β

respectively.
The ground cost metric C ∈ Rn×m represents the transporta-

tion cost between each pair of distribution mass locations. In
this work, we consider Wasserstein 2 (W 2) distances that use
a squared distance ground cost metric, where the (i, j)th entry
of C is given by

Ci, j = ∥xi − y j∥2
2.

As the goal is to minimize the cost of moving mass between
two distributions, Wasserstein distances require computing
a transport plan P that dictates how mass is transported
between the distributions. This is done by solving the following
optimization problem:

W (α,β) = min
P

⟨C,P⟩,

subject to P ∈ Rn×m
+ ,PT

1n = b,P1m = a,

where ⟨C,P⟩ is the Frobenius inner product between the cost
matrix C and the transport plan P, a and b contain the mass
weights for the distributions α and β, and 1n ∈Rn is the vector
of all ones.

Wasserstein distances can be unstable and computationally
expensive to compute, requiring O(n3 logn) computations to
evaluate in the case where n and m are of the same order. This
makes it difficult to use Wasserstein distances repeatedly in
two-sample tests. One solution to these problems is to add
a regularization term H(P) to form the entropic regularized
Wasserstein distance Wγ [6], [14]. This is also known as the
Sinkhorn distance and is defined as

Wγ(α,β) = min
P

⟨C,P⟩− γH(P), (2)

s.t P ∈ Rn×m
+ ,PT

1n = b,P1m = a, (3)

Fig. 1. Obtaining triplet pairs from a true change point. Sub-sequences Xi
and X s

i lie on the same side of the true change point shown by a vertical black
line. These sub-sequences and are taken as a similar pair, while sub-sequences
Xi and Xd

i lie on the opposite sides of this change point and are taken as a
dissimilar pair. This provides a triplet pair (Xi,X s

i ,X
d
i )) which can be used to

learn a ground metric parameter L

where H(P) is the entropy of the transport plan matrix P and
is given by

H(P) =
n

∑
i=1

m

∑
j=1

Pi. j(logPi, j −1),

while γ is a regularization parameter. This regularization terms
makes the minimization problem strongly convex and makes
it less sensitive to changes in input, and can be solved with
O(n2) computations using the Sinkhorn algorithm [6].

The regularized Wasserstein distance is biased as
W 2

γ (α,α) ̸= 0. An unbiased divergence can be constructed
from these regularized Wasserstein distances and is called the
Sinkhorn divergence:

Sγ(α,β) = Wγ(α,β)−
1
2

Wγ(α,α)−
1
2

Wγ(β,β). (4)

IV. METHODS

A. Learning a ground metric for optimal transport

While the squared distance is a natural choice for the
ground cost metric C in (2) , available side information can
also be used to learn a more suitable ground metric. This
idea was first explored to directly estimate the ground cost
using similarity/dissimilarity information for nearest neighbor
classification tasks [7]. Similarity/dissimilarity information was
also used to learn a Mahalanobis ground metric to compare
word embeddings through Wasserstein distances in [9].

We leverage this idea of learning a ground metric for
improving change point detection by using a recently developed
method called SinkDivLM [1]. This method uses available
change points to learn a ground metric CL where the (i, j)th

entry of this metric is given by,

CLi, j = ∥L(xi − y j)∥2
2,

where L is a learnable parameter. This learned ground ground
metric CL can be used in place of C in (5) to obtain SL,γ,
which is Sinkhorn divergence equipped with this learned metric.
SinkDivLM learns this parameter L by first obtain triplet pairs
from available true change points. Sub-sequences on the same
side of these change point are considered to be similar pairs
while sub-sequences on opposite sides of change points are
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considered to be dissimilar pairs. These similar, dissimilar pairs
are used to obtain triplets (X i,X s

i ,X
d
i ). Figure 1 provides an

example of how a true change point can be used to obtain a
triple pair. These pairs are then used to learn a sparse metric
L by minimizing

l(L) = ∑
i∈Triplets

[
c− (SL,γ(X i,Xd

i )−SL,γ (X i,X s
i ))

]+
+∥L∥1,

(5)
where SL,γ is Sinkhorn divergence equipped with this learned
metric, and c is triplet loss margin [1]. The L-1 regularization
term helps learn a sparse metric which makes it easy to interpret
what features or neurons are responsible for driving different
types of changes.

B. Online approach for CP detection at test time

After learning the ground metric, we then can use an online
or streaming approach for finding CPs. Concretely speaking,
we can compute a change point statistic at time instance t
by computing the Sinhkorn divergence SL,γ between instance
specific past and future windows X t

p and X t
f respectively. By

streaming through the data and repeatedly computing this
divergence on time instance specific past and future windows,
we can generate change point statistics at all time instances
within a stream. These change point statistics tell us the
likelihood of detecting a change point. A change point is
detected at instances where these statistics are greater than a
set threshold τ. In addition, working on small windows locally
at test time makes our approach inherently scalable to larger
datasets.

C. Learning multiple metrics across diverse state changes

As our dataset consists of distinct types of sleep state changes,
where each of these changes persists for different time scales
and is triggered by different neurons, it is difficult to learn
a single sparse metric that captures many diverse kinds of
CPs while also providing interpretability. To solve this, we
learn two metrics, one for sleep/wake transitions and one for
REM/nREM transitions, and combine the two sparse metrics at
inference time through simply pooling and re-normalizing both
learned metrics. This highlights the flexibility of the approach
in building in different types of labeled changes.

V. EXPERIMENTS

A. Dataset description

To study change point detection over long timescales and
in naturalistic settings, we curated a dataset containing a 12
hour recording of behavior and neural activity data from the
hippocampus of a mouse during free behavior [3]. We spike-
sorted the neural data with MountainSort [5], then binned 42
neurons using 4-second windows resulting in a total of 10,800
samples of the population firing rates.

During the experiment, the animal moves in and out of
different sleeping stages and natural behaviors. We performed
sleep-scoring to obtain arousal states (wake, sleep REM and
sleep nREM) using the recorded local field potentials [13]. We
also annotated the discrete behaviors of the mouse through

a manual tagging and analysis of the in-cage video (running,
moving in place, standing still) that is recorded simultaneously.

B. Results

To show the improvements due to our metric learning
approach, we compare our method with SinkDiv, a baseline
method that uses the Sinkhorn divergence without a learned
metric. Since change point detection performance is dependent
on detection threshold, we use area under the curve (AUC) as
an evaluation metric as it captures detection performance at
different thresholds, and is commonly used as a change point
evaluation metric in literature [11].

For this, we train the model on sleep/wake and REM/nREM
labels, and we evaluate its performance with the corresponding
labels, as well as all with the three of them combined
(REM/nREM/wake).

The results in Table I show the mean AUC for the SinkDiv
baseline and our model, SinkDivLM. These demonstrate that
learning a metric is an improvement over the baseline, since
the score increases from 0.58 to 0.85 in when trained and
tested with sleep/wake labels and from 0.92 to 0.95 in the case
of REM/nREM. As well, the combination of these metrics
raise the score for identifying the changes among the 3 arousal
substates, REM/nREM/wake.

Interestingly, SinkDivLM trained on sleep/wake labels does
not outperform SinkDiv when tested with REM/nREM/wake
labels but in the case of REM/nREM it does. A possible reason
for this is that the neurons responsible for REM/nREM changes
(6 and 15, as seen in Figure 2A) are shadowed by others in the
sleep/wake metric (e.g. we can see neuron 6 is not highlighted
in Figure 2B, while others are), which makes the detection of
REM/nREM CPs a challenging task, as the values of these
corresponding neurons are less high in comparison with the
rest. In the opposite case, the learned metric for REM/nREM
attributes high relative importance to neurons 13 and 15, which
are also relevant for the detection of sleep/wake changes, being
one of the brightest values in the matrix.

TABLE I
AUC OF CHANGE POINT DETECTION FOR SINKDIV BASELINE AND

SINKDIVLM MODEL REPORTED ON TEST SETS WITH DIFFERENT TRUTH CP
LABELS.

SinkDiv SinkDivLM
Trained on sleep/wake
Sleep/wake 0.58 0.85
REM/nREM/wake 0.79 0.72
Trained on REM/nREM
REM/nREM 0.92 0.95
REM/nREM/wake 0.79 0.82
Combined sleep metrics
REM/nREM/wake 0.79 0.85
Trained on running/no running
Running/no running 0.51 0.65

To check whether the learnt Sinkhorn divergence metric
could identify changes not only in arousal states but also in
complex behavior, a high level behavior label (running) was
isolated. The model was trained on the 3 points where the
mouse started or stopped running (running/no running). In
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Fig. 2. Summary of results. We show the learned metrics for the sleep substates (REM/nREM on top A, sleep/wake on top B) and the firing rate of the most
relevant neurons in each (highlighted in red in learned metric above) at examples of change points (bottom A, bottom B). C shows the change statistics for
SinkDiv (top) SinkDivLM when metrics from both sleep/wake and REM/nREM are combined (bottom).

Table I, we visualize how, as in the case with sleep CPs,
SinkDivLM reaches a much higher AUC than SinkDiv.

In addition to improving CP detection, our approach can be
used to provide insight into neurons and subgroups of neurons
that are most relevant for the detection of different CPs. In
our analysis of sleep and wake states, we found that in the
detection of nREM from REM sleep relies on a very small
number of neurons overall. In contrast, detecting wake vs. sleep
has more complex interactions across different neurons that
contribute to the detection of these more macroscale arousal
states. These results point to the utility of our approach, and
its ability to lend itself to interpretability of changes in neural
population states.

VI. CONCLUSION

In this paper, we developed a new approach for neural change
point detection that uses a small amount of labeled changes to
learn an interpretable metric to apply to neural populations. We
show that contrastive metric learning can be used to improves
the performance of change point detection in two kinds of
neural shifts: arousal states and natural behaviors. We tested
our approach on a large-scale neural recording spanning 12
hours with natural behavior and the animal moving in and out
of sleep and wake freely and without prompt.

Such a tool has the potential to infer which behavioral
changes are encoded in certain areas of the brain. These findings
suggest a promising new direction towards building a tool for
neuroscientists to analyze changes in neural activity during
complex behavior.
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