Methods for quantifying neuroanatomy

The lab is actively developing data analysis methods for learning cytoarchitectonics (layers), mapping brain areas, and distributed segmentation and analysis of large-scale neuroimaging data.

Related publications:

  • Dyer et al., 2016. Quantifying mesoscale neuroanatomy using X-ray microtomography (Web, Paper)
  • T.J. LaGrow, M. Moore, J.A. Prasad, A. Webber , M.A. Davenport, E.L. Dyer, Cytoarchitecture and Layer Estimation in High-Resolution Neuroanatomical Images, Frontiers in Neuroinformatics (in review), July 2018.

Low-dimensional signal models

Unions of subspaces (UoS) are a generalization of single subspace models that approximate data points as living on multiple subspaces, rather than assuming a global low-dimensional model (as in PCA). Modeling data with mixtures of subspaces provides a more compact and simple representation of the data, and thus can lead to better partitioning (clustering) of the data and help in compression and denoising.

Related publications:

  • E.L. Dyer, A.C. Sankaranarayanan, and R.G. Baraniuk, Greedy feature selection for subspace clustering, The Journal of Machine Learning Research 14 (1), 2487-2517, September, 2013. (Paper)
  • E.L. Dyer, T.A. Goldstein, R. Patel, K.P. K├Ârding, and R.G. Baraniuk, Sparse self-expressive decompositions for dimensionality reduction and clustering (Paper)
  • R.J. Patel, T.A. Goldstein, E.L. Dyer, A. Mirhoseini, and R.G. Baraniuk, Deterministic column sampling for low rank approximation: Nystrom vs. Incomplete Cholesky Decomposition, SIAM Data Mining (SDM) Conference, May 2016. (Paper, Code)

Analyzing the activity of neuronal populations

Advances in monitoring the activity of large populations of neurons has provided new insights into the collective dynamics of neurons. The lab is working on methods that learn and exploit low-dimensional structure in neural activity for decoding, classification, denoising, and deconvolution.

Related publications:

  • E.L. Dyer, M. Azar, H.L. Fernandes, M. Perich, L.E. Miller, and K.P. K├Ârding: A cryptography-based approach to brain decoding, to appear in Nature Biomedical Engineering, 2017. (Web, Paper)
  • E.L. Dyer, C. Studer, J.T. Robinson, and R.G Baraniuk, A robust and efficient method to recover neural events from noisy and corrupted data, IEEE EMBS Neural Engineering Conference, 2013. (Paper, Code)

Large-scale optimization

Optimization problems are ubiquitous in machine learning and neuroscience. The lab works on a few different topics in the areas of non-convex optimization and distributed machine learning.

Related publications:

  • A. Mirhoseini, E.L. Dyer, E. Songhori, R.G. Baraniuk, and F. Koushanfar, RankMap: A platform-aware framework for distributed learning from dense datasets, IEEE Trans. on Neural Networks and Learning Systems, 2017. (Paper, Code)
  • M Gheshlaghi Azar, E.L. Dyer, Konrad Kording, Convex Relaxation Regression (CoRR): Black-box optimization of a smooth function by learning its convex envelope, Proc. of the Conference on Uncertainity in Artificial Intelligence, 2016. (Paper)

A VISUALIZATION OF RECENT PUBLICATIONS FROM THE NerDS lab