NERDS LAB

  • About
  • Research
    • Papers
    • Code / Data
  • People
    • Lab Members
    • PI-Profile
  • News
  • Contact Us

New paper on data-adaptive latent augmentation to appear at WACV!

January 6, 2024 by Eva Dyer

Ran and Jingyun will travel to Hawaii to present Latent DR at WACV!

Abstract:  Despite significant advances in deep learning, models often struggle to generalize well to new, unseen domains, especially when training data is limited. To address this challenge, we propose a novel approach for distribution-aware latent augmentation that leverages the relationships across samples to guide the augmentation procedure. Our approach first degrades the samples stochastically in the latent space, mapping them to augmented labels, and then restores the samples from their corrupted versions during training. This process confuses the classifier in the degradation step and restores the overall class distribution of the original samples, promoting diverse intra-class/cross-domain variability. We extensively evaluate our approach on a diverse set of datasets and tasks, including domain generalization benchmarks and medical imaging datasets with strong domain shift, where we show our approach achieves significant improvements over existing methods for latent space augmentation. We further show that our method can be flexibly adapted to long-tail recognition tasks, demonstrating its versatility in building more generalizable models. Code is at https://github.com/nerdslab/LatentDR.

 

Related

Filed Under: Posts

Recent Posts

  • NeurIPS 2024: Revealing connections between contrastive learning and optimal transport January 1, 2025
  • ICML 2024: Unveiling class disparities with spectral imbalance July 9, 2024
  • ICLR 2024: New work on data-adaptive position embeddings for timeseries transformers June 3, 2024
  • Check out this new visualization tool for behavior modeling! May 9, 2024
  • New paper on the theory of data augmentation in JMLR! April 8, 2024
  • New paper on data-adaptive latent augmentation to appear at WACV! January 6, 2024
IMG_2521
  • About
  • Research
  • People
  • News
  • Contact Us

Copyright © 2025 · Minimum Pro on Genesis Framework · WordPress · Log in