NERDS LAB

  • About
  • Research
    • Papers
    • Code / Data
  • People
    • Lab Members
    • PI-Profile
  • News
  • Contact Us

NeurIPS 2021 – Swap-VAE selected for an Oral !

November 22, 2021 by Eva Dyer

Our new paper on building unsupervised representations of neural activity was accepted for an oral presentation at NeurIPS!

Check out the paper here: https://www.biorxiv.org/content/10.1101/2021.07.21.453285v1.full

Check out the code here:
https://github.com/nerdslab/SwapVAE

__

Abstract:  Meaningful and simplified representations of neural activity can yield insights into how and what information is being processed within a neural circuit. However, without labels, finding representations that reveal the link between the brain and behavior can be challenging. Here, we introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE. Our approach combines a generative modeling framework with an instance-specific alignment loss that tries to maximize the representational similarity between transformed views of the input (brain state). These transformed (or augmented) views are created by dropping out neurons and jittering samples in time, which intuitively should lead the network to a representation that maintains both temporal consistency and invariance to the specific neurons used to represent the neural state. Through evaluations on both synthetic data and neural recordings from hundreds of neurons in different primate brains, we show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.

Related

Filed Under: Posts

Recent Posts

  • NeurIPS 2024: Revealing connections between contrastive learning and optimal transport January 1, 2025
  • ICML 2024: Unveiling class disparities with spectral imbalance July 9, 2024
  • ICLR 2024: New work on data-adaptive position embeddings for timeseries transformers June 3, 2024
  • Check out this new visualization tool for behavior modeling! May 9, 2024
  • New paper on the theory of data augmentation in JMLR! April 8, 2024
  • New paper on data-adaptive latent augmentation to appear at WACV! January 6, 2024
IMG_2521
  • About
  • Research
  • People
  • News
  • Contact Us

Copyright © 2025 · Minimum Pro on Genesis Framework · WordPress · Log in